pyspark.sql.functions.explode#

pyspark.sql.functions.explode(col)[source]#

Returns a new row for each element in the given array or map. Uses the default column name col for elements in the array and key and value for elements in the map unless specified otherwise.

New in version 1.4.0.

Changed in version 3.4.0: Supports Spark Connect.

Parameters
colColumn or str

Target column to work on.

Returns
Column

One row per array item or map key value.

See also

pyspark.functions.posexplode()
pyspark.functions.explode_outer()
pyspark.functions.posexplode_outer()

Notes

Only one explode is allowed per SELECT clause.

Examples

Example 1: Exploding an array column

>>> import pyspark.sql.functions as sf
>>> from pyspark.sql import Row
>>> df = spark.createDataFrame([Row(id=1, values=[1, 2, 3])])
>>> df.select(sf.explode(df.values).alias("value")).show()
+-----+
|value|
+-----+
|    1|
|    2|
|    3|
+-----+

Example 2: Exploding a map column

>>> import pyspark.sql.functions as sf
>>> from pyspark.sql import Row
>>> df = spark.createDataFrame([Row(id=1, values={"a": "b", "c": "d"})])
>>> df.select(sf.explode(df.values).alias("key", "value")).show()
+---+-----+
|key|value|
+---+-----+
|  a|    b|
|  c|    d|
+---+-----+

Example 3: Exploding an array column with multiple rows

>>> import pyspark.sql.functions as sf
>>> from pyspark.sql import Row
>>> df = spark.createDataFrame(
...     [Row(id=1, values=[1, 2]), Row(id=2, values=[3, 4])])
>>> df.select("id", sf.explode(df.values).alias("value")).show()
+---+-----+
| id|value|
+---+-----+
|  1|    1|
|  1|    2|
|  2|    3|
|  2|    4|
+---+-----+

Example 4: Exploding a map column with multiple rows

>>> import pyspark.sql.functions as sf
>>> from pyspark.sql import Row
>>> df = spark.createDataFrame([
...     Row(id=1, values={"a": "b", "c": "d"}),
...     Row(id=2, values={"e": "f", "g": "h"})
... ])
>>> df.select("id", sf.explode(df.values).alias("key", "value")).show()
+---+---+-----+
| id|key|value|
+---+---+-----+
|  1|  a|    b|
|  1|  c|    d|
|  2|  e|    f|
|  2|  g|    h|
+---+---+-----+

Example 5: Exploding multiple array columns

>>> import pyspark.sql.functions as sf
>>> from pyspark.sql import Row
>>> df = spark.createDataFrame([Row(a=1, list1=[1, 2], list2=[3, 4])])
>>> df.select(sf.explode(df.list1).alias("list1"), "list2") \
...     .select("list1", sf.explode(df.list2).alias("list2")).show()
+-----+-----+
|list1|list2|
+-----+-----+
|    1|    3|
|    1|    4|
|    2|    3|
|    2|    4|
+-----+-----+

Example 6: Exploding an array of struct column

>>> import pyspark.sql.functions as sf
>>> from pyspark.sql import Row
>>> df = spark.createDataFrame(
...     [(1, [(1, 2), (3, 4)])],
...     "id: int, structlist: array<struct<a:int,b:int>>")
>>> df = df.select(sf.explode(df.structlist).alias("struct"))
>>> df.select("struct.*").show()
+---+---+
|  a|  b|
+---+---+
|  1|  2|
|  3|  4|
+---+---+

Example 7: Exploding an empty array column

>>> import pyspark.sql.functions as sf
>>> from pyspark.sql import Row
>>> df = spark.createDataFrame([(1, [])], "id: int, values: array<int>")
>>> df.select(sf.explode(df.values).alias("value")).show()
+-----+
|value|
+-----+
+-----+

Example 8: Exploding an empty map column

>>> import pyspark.sql.functions as sf
>>> from pyspark.sql import Row
>>> df = spark.createDataFrame([(1, {})], "id: int, values: map<int,int>")
>>> df.select(sf.explode(df.values).alias("key", "value")).show()
+---+-----+
|key|value|
+---+-----+
+---+-----+