pyspark.sql.functions.explode#
- pyspark.sql.functions.explode(col)[source]#
Returns a new row for each element in the given array or map. Uses the default column name col for elements in the array and key and value for elements in the map unless specified otherwise.
New in version 1.4.0.
Changed in version 3.4.0: Supports Spark Connect.
- Parameters
- col
Column
or str Target column to work on.
- col
- Returns
Column
One row per array item or map key value.
See also
pyspark.functions.posexplode()
pyspark.functions.explode_outer()
pyspark.functions.posexplode_outer()
Notes
Only one explode is allowed per SELECT clause.
Examples
Example 1: Exploding an array column
>>> import pyspark.sql.functions as sf >>> from pyspark.sql import Row >>> df = spark.createDataFrame([Row(id=1, values=[1, 2, 3])]) >>> df.select(sf.explode(df.values).alias("value")).show() +-----+ |value| +-----+ | 1| | 2| | 3| +-----+
Example 2: Exploding a map column
>>> import pyspark.sql.functions as sf >>> from pyspark.sql import Row >>> df = spark.createDataFrame([Row(id=1, values={"a": "b", "c": "d"})]) >>> df.select(sf.explode(df.values).alias("key", "value")).show() +---+-----+ |key|value| +---+-----+ | a| b| | c| d| +---+-----+
Example 3: Exploding an array column with multiple rows
>>> import pyspark.sql.functions as sf >>> from pyspark.sql import Row >>> df = spark.createDataFrame( ... [Row(id=1, values=[1, 2]), Row(id=2, values=[3, 4])]) >>> df.select("id", sf.explode(df.values).alias("value")).show() +---+-----+ | id|value| +---+-----+ | 1| 1| | 1| 2| | 2| 3| | 2| 4| +---+-----+
Example 4: Exploding a map column with multiple rows
>>> import pyspark.sql.functions as sf >>> from pyspark.sql import Row >>> df = spark.createDataFrame([ ... Row(id=1, values={"a": "b", "c": "d"}), ... Row(id=2, values={"e": "f", "g": "h"}) ... ]) >>> df.select("id", sf.explode(df.values).alias("key", "value")).show() +---+---+-----+ | id|key|value| +---+---+-----+ | 1| a| b| | 1| c| d| | 2| e| f| | 2| g| h| +---+---+-----+
Example 5: Exploding multiple array columns
>>> import pyspark.sql.functions as sf >>> from pyspark.sql import Row >>> df = spark.createDataFrame([Row(a=1, list1=[1, 2], list2=[3, 4])]) >>> df.select(sf.explode(df.list1).alias("list1"), "list2") \ ... .select("list1", sf.explode(df.list2).alias("list2")).show() +-----+-----+ |list1|list2| +-----+-----+ | 1| 3| | 1| 4| | 2| 3| | 2| 4| +-----+-----+
Example 6: Exploding an array of struct column
>>> import pyspark.sql.functions as sf >>> from pyspark.sql import Row >>> df = spark.createDataFrame( ... [(1, [(1, 2), (3, 4)])], ... "id: int, structlist: array<struct<a:int,b:int>>") >>> df = df.select(sf.explode(df.structlist).alias("struct")) >>> df.select("struct.*").show() +---+---+ | a| b| +---+---+ | 1| 2| | 3| 4| +---+---+
Example 7: Exploding an empty array column
>>> import pyspark.sql.functions as sf >>> from pyspark.sql import Row >>> df = spark.createDataFrame([(1, [])], "id: int, values: array<int>") >>> df.select(sf.explode(df.values).alias("value")).show() +-----+ |value| +-----+ +-----+
Example 8: Exploding an empty map column
>>> import pyspark.sql.functions as sf >>> from pyspark.sql import Row >>> df = spark.createDataFrame([(1, {})], "id: int, values: map<int,int>") >>> df.select(sf.explode(df.values).alias("key", "value")).show() +---+-----+ |key|value| +---+-----+ +---+-----+