| Package | Description | 
|---|---|
| org.apache.commons.math3.analysis | 
      Parent package for common numerical analysis procedures, including root finding,
      function interpolation and integration. | 
| org.apache.commons.math3.analysis.differentiation | 
   This package holds the main interfaces and basic building block classes
   dealing with differentiation. | 
| org.apache.commons.math3.analysis.integration | Numerical integration (quadrature) algorithms for univariate real functions. | 
| org.apache.commons.math3.analysis.solvers | Root finding algorithms, for univariate real functions. | 
| org.apache.commons.math3.distribution | Implementations of common discrete and continuous distributions. | 
| org.apache.commons.math3.genetics | This package provides Genetic Algorithms components and implementations. | 
| org.apache.commons.math3.geometry.spherical.oned | 
 This package provides basic geometry components on the 1-sphere. | 
| org.apache.commons.math3.linear | Linear algebra support. | 
| org.apache.commons.math3.random | Random number and random data generators. | 
| org.apache.commons.math3.special | Implementations of special functions such as Beta and Gamma. | 
| org.apache.commons.math3.stat.inference | Classes providing hypothesis testing. | 
| org.apache.commons.math3.stat.interval | Classes providing binomial proportion confidence interval construction. | 
| org.apache.commons.math3.util | Convenience routines and common data structures used throughout the commons-math library. | 
| Modifier and Type | Method and Description | 
|---|---|
| static double[] | FunctionUtils. sample(UnivariateFunction f,
      double min,
      double max,
      int n)Samples the specified univariate real function on the specified interval. | 
| Modifier and Type | Method and Description | 
|---|---|
| static DSCompiler | DSCompiler. getCompiler(int parameters,
           int order)Get the compiler for number of free parameters and order. | 
| double | DerivativeStructure. getPartialDerivative(int... orders)Get a partial derivative. | 
| int | DSCompiler. getPartialDerivativeIndex(int... orders)Get the index of a partial derivative in the array. | 
| Constructor and Description | 
|---|
| DerivativeStructure(int parameters,
                   int order)Build an instance with all values and derivatives set to 0. | 
| DerivativeStructure(int parameters,
                   int order,
                   double... derivatives)Build an instance from all its derivatives. | 
| DerivativeStructure(int parameters,
                   int order,
                   double value)Build an instance representing a constant value. | 
| DerivativeStructure(int parameters,
                   int order,
                   int index,
                   double value)Build an instance representing a variable. | 
| FiniteDifferencesDifferentiator(int nbPoints,
                               double stepSize,
                               double tLower,
                               double tUpper)Build a differentiator with number of points and step size when independent variable is bounded. | 
| Constructor and Description | 
|---|
| MidPointIntegrator(double relativeAccuracy,
                  double absoluteAccuracy,
                  int minimalIterationCount,
                  int maximalIterationCount)Build a midpoint integrator with given accuracies and iterations counts. | 
| MidPointIntegrator(int minimalIterationCount,
                  int maximalIterationCount)Build a midpoint integrator with given iteration counts. | 
| RombergIntegrator(double relativeAccuracy,
                 double absoluteAccuracy,
                 int minimalIterationCount,
                 int maximalIterationCount)Build a Romberg integrator with given accuracies and iterations counts. | 
| RombergIntegrator(int minimalIterationCount,
                 int maximalIterationCount)Build a Romberg integrator with given iteration counts. | 
| SimpsonIntegrator(double relativeAccuracy,
                 double absoluteAccuracy,
                 int minimalIterationCount,
                 int maximalIterationCount)Build a Simpson integrator with given accuracies and iterations counts. | 
| SimpsonIntegrator(int minimalIterationCount,
                 int maximalIterationCount)Build a Simpson integrator with given iteration counts. | 
| TrapezoidIntegrator(double relativeAccuracy,
                   double absoluteAccuracy,
                   int minimalIterationCount,
                   int maximalIterationCount)Build a trapezoid integrator with given accuracies and iterations counts. | 
| TrapezoidIntegrator(int minimalIterationCount,
                   int maximalIterationCount)Build a trapezoid integrator with given iteration counts. | 
| Modifier and Type | Method and Description | 
|---|---|
| double | LaguerreSolver. doSolve()Method for implementing actual optimization algorithms in derived
 classes. | 
| protected double | BrentSolver. doSolve()Method for implementing actual optimization algorithms in derived
 classes. | 
| protected double | BracketingNthOrderBrentSolver. doSolve()Method for implementing actual optimization algorithms in derived
 classes. | 
| protected double | MullerSolver. doSolve()Method for implementing actual optimization algorithms in derived
 classes. | 
| protected double | MullerSolver2. doSolve()Method for implementing actual optimization algorithms in derived
 classes. | 
| double | BracketingNthOrderBrentSolver. solve(int maxEval,
     UnivariateFunction f,
     double min,
     double max,
     AllowedSolution allowedSolution)Solve for a zero in the given interval. | 
| double | BracketingNthOrderBrentSolver. solve(int maxEval,
     UnivariateFunction f,
     double min,
     double max,
     double startValue,
     AllowedSolution allowedSolution)Solve for a zero in the given interval, start at  startValue. | 
| static void | UnivariateSolverUtils. verifyInterval(double lower,
              double upper)Check that the endpoints specify an interval. | 
| protected void | BaseAbstractUnivariateSolver. verifyInterval(double lower,
              double upper)Check that the endpoints specify an interval. | 
| static void | UnivariateSolverUtils. verifySequence(double lower,
              double initial,
              double upper)Check that  lower < initial < upper. | 
| protected void | BaseAbstractUnivariateSolver. verifySequence(double lower,
              double initial,
              double upper)Check that  lower < initial < upper. | 
| Modifier and Type | Method and Description | 
|---|---|
| double | LogNormalDistribution. cumulativeProbability(double x0,
                     double x1)Deprecated. 
 | 
| double | NormalDistribution. cumulativeProbability(double x0,
                     double x1)Deprecated. 
 | 
| double | ParetoDistribution. cumulativeProbability(double x0,
                     double x1)Deprecated. 
 | 
| double | RealDistribution. cumulativeProbability(double x0,
                     double x1)Deprecated. 
 As of 3.1. In 4.0, this method will be renamed
  probability(double x0, double x1). | 
| double | AbstractRealDistribution. cumulativeProbability(double x0,
                     double x1)Deprecated. 
 As of 3.1 (to be removed in 4.0). Please use
  AbstractRealDistribution.probability(double,double)instead. | 
| double | IntegerDistribution. cumulativeProbability(int x0,
                     int x1)For a random variable  Xwhose values are distributed according
 to this distribution, this method returnsP(x0 < X <= x1). | 
| double | AbstractIntegerDistribution. cumulativeProbability(int x0,
                     int x1)For a random variable  Xwhose values are distributed according
 to this distribution, this method returnsP(x0 < X <= x1). | 
| double | LogNormalDistribution. probability(double x0,
           double x1)For a random variable  Xwhose values are distributed according
 to this distribution, this method returnsP(x0 < X <= x1). | 
| double | NormalDistribution. probability(double x0,
           double x1)For a random variable  Xwhose values are distributed according
 to this distribution, this method returnsP(x0 < X <= x1). | 
| Constructor and Description | 
|---|
| HypergeometricDistribution(int populationSize,
                          int numberOfSuccesses,
                          int sampleSize)Construct a new hypergeometric distribution with the specified population
 size, number of successes in the population, and sample size. | 
| HypergeometricDistribution(RandomGenerator rng,
                          int populationSize,
                          int numberOfSuccesses,
                          int sampleSize)Creates a new hypergeometric distribution. | 
| TriangularDistribution(double a,
                      double c,
                      double b)Creates a triangular real distribution using the given lower limit,
 upper limit, and mode. | 
| TriangularDistribution(RandomGenerator rng,
                      double a,
                      double c,
                      double b)Creates a triangular distribution. | 
| UniformIntegerDistribution(int lower,
                          int upper)Creates a new uniform integer distribution using the given lower and
 upper bounds (both inclusive). | 
| UniformIntegerDistribution(RandomGenerator rng,
                          int lower,
                          int upper)Creates a new uniform integer distribution using the given lower and
 upper bounds (both inclusive). | 
| UniformRealDistribution(double lower,
                       double upper)Create a uniform real distribution using the given lower and upper
 bounds. | 
| UniformRealDistribution(double lower,
                       double upper,
                       double inverseCumAccuracy)Deprecated. 
 as of 3.2, inverse CDF is now calculated analytically, use
              UniformRealDistribution.UniformRealDistribution(double, double)instead. | 
| UniformRealDistribution(RandomGenerator rng,
                       double lower,
                       double upper)Creates a uniform distribution. | 
| Modifier and Type | Method and Description | 
|---|---|
| void | Population. addChromosome(Chromosome chromosome)Add the given chromosome to the population. | 
| void | ListPopulation. addChromosome(Chromosome chromosome)Add the given chromosome to the population. | 
| void | ListPopulation. addChromosomes(Collection<Chromosome> chromosomeColl)Add a  Collectionof chromosomes to thisPopulation. | 
| void | ListPopulation. setChromosomes(List<Chromosome> chromosomes)Deprecated. 
 use  ListPopulation.addChromosomes(Collection)instead | 
| Constructor and Description | 
|---|
| ElitisticListPopulation(List<Chromosome> chromosomes,
                       int populationLimit,
                       double elitismRate)Creates a new  ElitisticListPopulationinstance. | 
| ListPopulation(List<Chromosome> chromosomes,
              int populationLimit)Creates a new ListPopulation instance. | 
| Constructor and Description | 
|---|
| Arc(double lower,
   double upper,
   double tolerance)Simple constructor. | 
| ArcsSet(double lower,
       double upper,
       double tolerance)Build an arcs set corresponding to a single arc. | 
| Modifier and Type | Method and Description | 
|---|---|
| void | DiagonalMatrix. addToEntry(int row,
          int column,
          double increment)Adds (in place) the specified value to the specified entry of
  thismatrix. | 
| OpenMapRealMatrix | OpenMapRealMatrix. createMatrix(int rowDimension,
            int columnDimension)Create a new RealMatrix of the same type as the instance with the
 supplied
 row and column dimensions. | 
| OpenMapRealMatrix | OpenMapRealMatrix. multiply(OpenMapRealMatrix m)Postmultiply this matrix by  m. | 
| RealMatrix | OpenMapRealMatrix. multiply(RealMatrix m)Returns the result of postmultiplying  thisbym. | 
| void | DiagonalMatrix. setEntry(int row,
        int column,
        double value)Set the entry in the specified row and column. | 
| Constructor and Description | 
|---|
| ArrayFieldVector(Field<T> field,
                T[] d,
                int pos,
                int size)Construct a vector from part of a array. | 
| ArrayFieldVector(T[] d,
                int pos,
                int size)Construct a vector from part of a array. | 
| ArrayRealVector(double[] d,
               int pos,
               int size)Construct a vector from part of a array. | 
| ArrayRealVector(Double[] d,
               int pos,
               int size)Construct a vector from part of an array. | 
| OpenMapRealMatrix(int rowDimension,
                 int columnDimension)Build a sparse matrix with the supplied row and column dimensions. | 
| Modifier and Type | Method and Description | 
|---|---|
| int | RandomDataGenerator. nextHypergeometric(int populationSize,
                  int numberOfSuccesses,
                  int sampleSize)Generates a random value from the  Hypergeometric Distribution. | 
| int | RandomDataImpl. nextHypergeometric(int populationSize,
                  int numberOfSuccesses,
                  int sampleSize)Deprecated.  Generates a random value from the  Hypergeometric Distribution. | 
| int | RandomDataGenerator. nextInt(int lower,
       int upper)Generates a uniformly distributed random integer between  lowerandupper(endpoints included). | 
| int | RandomData. nextInt(int lower,
       int upper)Deprecated.  Generates a uniformly distributed random integer between  lowerandupper(endpoints included). | 
| int | RandomDataImpl. nextInt(int lower,
       int upper)Deprecated.  Generates a uniformly distributed random integer between  lowerandupper(endpoints included). | 
| long | RandomDataGenerator. nextLong(long lower,
        long upper)Generates a uniformly distributed random long integer between
  lowerandupper(endpoints included). | 
| long | RandomData. nextLong(long lower,
        long upper)Deprecated.  Generates a uniformly distributed random long integer between
  lowerandupper(endpoints included). | 
| long | RandomDataImpl. nextLong(long lower,
        long upper)Deprecated.  Generates a uniformly distributed random long integer between
  lowerandupper(endpoints included). | 
| int[] | RandomDataGenerator. nextPermutation(int n,
               int k)Generates an integer array of length  kwhose entries are selected
 randomly, without repetition, from the integers0, ..., n - 1(inclusive). | 
| int[] | RandomData. nextPermutation(int n,
               int k)Deprecated.  Generates an integer array of length  kwhose entries are selected
 randomly, without repetition, from the integers0, ..., n - 1(inclusive). | 
| int[] | RandomDataImpl. nextPermutation(int n,
               int k)Deprecated.  Generates an integer array of length  kwhose entries are selected
 randomly, without repetition, from the integers0, ..., n - 1(inclusive). | 
| Object[] | RandomDataGenerator. nextSample(Collection<?> c,
          int k)Returns an array of  kobjects selected randomly from the
 Collectionc. | 
| Object[] | RandomData. nextSample(Collection<?> c,
          int k)Deprecated.  Returns an array of  kobjects selected randomly from the
 Collectionc. | 
| Object[] | RandomDataImpl. nextSample(Collection<?> c,
          int k)Deprecated.  Returns an array of  kobjects selected randomly from the
 Collectionc. | 
| int | RandomDataGenerator. nextSecureInt(int lower,
             int upper)Generates a uniformly distributed random integer between  lowerandupper(endpoints included) from a secure random sequence. | 
| int | RandomData. nextSecureInt(int lower,
             int upper)Deprecated.  Generates a uniformly distributed random integer between  lowerandupper(endpoints included) from a secure random sequence. | 
| int | RandomDataImpl. nextSecureInt(int lower,
             int upper)Deprecated.  Generates a uniformly distributed random integer between  lowerandupper(endpoints included) from a secure random sequence. | 
| long | RandomDataGenerator. nextSecureLong(long lower,
              long upper)Generates a uniformly distributed random long integer between
  lowerandupper(endpoints included) from a secure random
 sequence. | 
| long | RandomData. nextSecureLong(long lower,
              long upper)Deprecated.  Generates a uniformly distributed random long integer between
  lowerandupper(endpoints included) from a secure random
 sequence. | 
| long | RandomDataImpl. nextSecureLong(long lower,
              long upper)Deprecated.  Generates a uniformly distributed random long integer between
  lowerandupper(endpoints included) from a secure random
 sequence. | 
| double | RandomDataGenerator. nextUniform(double lower,
           double upper)Generates a uniformly distributed random value from the open interval
  (lower, upper)(i.e., endpoints excluded). | 
| double | RandomData. nextUniform(double lower,
           double upper)Deprecated.  Generates a uniformly distributed random value from the open interval
  (lower, upper)(i.e., endpoints excluded). | 
| double | RandomDataImpl. nextUniform(double lower,
           double upper)Deprecated.  Generates a uniformly distributed random value from the open interval
  (lower, upper)(i.e., endpoints excluded). | 
| double | RandomDataGenerator. nextUniform(double lower,
           double upper,
           boolean lowerInclusive)Generates a uniformly distributed random value from the interval
  (lower, upper)or the interval[lower, upper). | 
| double | RandomData. nextUniform(double lower,
           double upper,
           boolean lowerInclusive)Deprecated.  Generates a uniformly distributed random value from the interval
  (lower, upper)or the interval[lower, upper). | 
| double | RandomDataImpl. nextUniform(double lower,
           double upper,
           boolean lowerInclusive)Deprecated.  Generates a uniformly distributed random value from the interval
  (lower, upper)or the interval[lower, upper). | 
| Modifier and Type | Method and Description | 
|---|---|
| static double | Gamma. logGamma1p(double x)Returns the value of log Γ(1 + x) for -0.5 ≤ x ≤ 1.5. | 
| Modifier and Type | Method and Description | 
|---|---|
| double | WilcoxonSignedRankTest. wilcoxonSignedRankTest(double[] x,
                      double[] y,
                      boolean exactPValue)Returns the observed significance level, or 
 p-value, associated with a 
 Wilcoxon signed ranked statistic comparing mean for two related
 samples or repeated measurements on a single sample. | 
| Modifier and Type | Method and Description | 
|---|---|
| ConfidenceInterval | BinomialConfidenceInterval. createInterval(int numberOfTrials,
              int numberOfSuccesses,
              double confidenceLevel)Create a confidence interval for the true probability of success
 of an unknown binomial distribution with the given observed number
 of trials, successes and confidence level. | 
| Modifier and Type | Method and Description | 
|---|---|
| static long | CombinatoricsUtils. binomialCoefficient(int n,
                   int k)Returns an exact representation of the  Binomial
 Coefficient, " n choose k", the number ofk-element subsets that can be selected from ann-element set. | 
| static long | ArithmeticUtils. binomialCoefficient(int n,
                   int k)Deprecated. 
 | 
| static double | CombinatoricsUtils. binomialCoefficientDouble(int n,
                         int k)Returns a  doublerepresentation of the  Binomial
 Coefficient, "n choose k", the number ofk-element subsets that can be selected from ann-element set. | 
| static double | ArithmeticUtils. binomialCoefficientDouble(int n,
                         int k)Deprecated. 
 | 
| static double | CombinatoricsUtils. binomialCoefficientLog(int n,
                      int k)Returns the natural  logof the  Binomial
 Coefficient, "n choose k", the number ofk-element subsets that can be selected from ann-element set. | 
| static double | ArithmeticUtils. binomialCoefficientLog(int n,
                      int k)Deprecated. 
 | 
| static void | CombinatoricsUtils. checkBinomial(int n,
             int k)Check binomial preconditions. | 
| static long | CombinatoricsUtils. stirlingS2(int n,
          int k)Returns the 
 Stirling number of the second kind, " S(n,k)", the number of
 ways of partitioning ann-element set intoknon-empty
 subsets. | 
| static long | ArithmeticUtils. stirlingS2(int n,
          int k)Deprecated. 
 | 
Copyright © 2003–2016 The Apache Software Foundation. All rights reserved.