| Package | Description | 
|---|---|
| org.apache.commons.math3.analysis.differentiation | 
   This package holds the main interfaces and basic building block classes
   dealing with differentiation. | 
| org.apache.commons.math3.analysis.interpolation | Univariate real functions interpolation algorithms. | 
| org.apache.commons.math3.complex | Complex number type and implementations of complex transcendental
     functions. | 
| org.apache.commons.math3.distribution | Implementations of common discrete and continuous distributions. | 
| org.apache.commons.math3.genetics | This package provides Genetic Algorithms components and implementations. | 
| org.apache.commons.math3.linear | Linear algebra support. | 
| org.apache.commons.math3.ml.clustering | Clustering algorithms. | 
| org.apache.commons.math3.optim.nonlinear.scalar.noderiv | This package provides optimization algorithms that do not require derivatives. | 
| org.apache.commons.math3.optimization.direct | 
 This package provides optimization algorithms that don't require derivatives. | 
| org.apache.commons.math3.random | Random number and random data generators. | 
| org.apache.commons.math3.stat.clustering | All classes and sub-packages of this package are deprecated. | 
| org.apache.commons.math3.stat.inference | Classes providing hypothesis testing. | 
| org.apache.commons.math3.stat.interval | Classes providing binomial proportion confidence interval construction. | 
| org.apache.commons.math3.util | Convenience routines and common data structures used throughout the commons-math library. | 
| Constructor and Description | 
|---|
| FiniteDifferencesDifferentiator(int nbPoints,
                               double stepSize)Build a differentiator with number of points and step size when independent variable is unbounded. | 
| FiniteDifferencesDifferentiator(int nbPoints,
                               double stepSize,
                               double tLower,
                               double tUpper)Build a differentiator with number of points and step size when independent variable is bounded. | 
| Constructor and Description | 
|---|
| LoessInterpolator(double bandwidth,
                 int robustnessIters,
                 double accuracy)Construct a new  LoessInterpolatorwith given bandwidth, number of robustness iterations and accuracy. | 
| MicrosphereInterpolator(int elements,
                       int exponent)Deprecated.  Create a microsphere interpolator. | 
| MicrosphereProjectionInterpolator(InterpolatingMicrosphere microsphere,
                                 double exponent,
                                 boolean sharedSphere,
                                 double noInterpolationTolerance)Create a microsphere interpolator. | 
| SmoothingPolynomialBicubicSplineInterpolator(int degree)Deprecated.  | 
| SmoothingPolynomialBicubicSplineInterpolator(int xDegree,
                                            int yDegree)Deprecated.  | 
| Modifier and Type | Method and Description | 
|---|---|
| List<Complex> | Complex. nthRoot(int n)Computes the n-th roots of this complex number. | 
| Constructor and Description | 
|---|
| EnumeratedDistribution(List<Pair<T,Double>> pmf)Create an enumerated distribution using the given probability mass function
 enumeration. | 
| EnumeratedDistribution(RandomGenerator rng,
                      List<Pair<T,Double>> pmf)Create an enumerated distribution using the given random number generator
 and probability mass function enumeration. | 
| EnumeratedIntegerDistribution(int[] singletons,
                             double[] probabilities)Create a discrete distribution using the given probability mass function
 definition. | 
| EnumeratedIntegerDistribution(RandomGenerator rng,
                             int[] singletons,
                             double[] probabilities)Create a discrete distribution using the given random number generator
 and probability mass function definition. | 
| EnumeratedRealDistribution(double[] singletons,
                          double[] probabilities)Create a discrete real-valued distribution using the given probability mass function
 enumeration. | 
| EnumeratedRealDistribution(RandomGenerator rng,
                          double[] singletons,
                          double[] probabilities)Create a discrete real-valued distribution using the given random number generator
 and probability mass function enumeration. | 
| HypergeometricDistribution(int populationSize,
                          int numberOfSuccesses,
                          int sampleSize)Construct a new hypergeometric distribution with the specified population
 size, number of successes in the population, and sample size. | 
| HypergeometricDistribution(RandomGenerator rng,
                          int populationSize,
                          int numberOfSuccesses,
                          int sampleSize)Creates a new hypergeometric distribution. | 
| MixtureMultivariateNormalDistribution(RandomGenerator rng,
                                     List<Pair<Double,MultivariateNormalDistribution>> components)Creates a mixture model from a list of distributions and their
 associated weights. | 
| Modifier and Type | Method and Description | 
|---|---|
| void | ListPopulation. setPopulationLimit(int populationLimit)Sets the maximal population size. | 
| Constructor and Description | 
|---|
| ElitisticListPopulation(int populationLimit,
                       double elitismRate)Creates a new  ElitisticListPopulationinstance and initializes its inner chromosome list. | 
| ElitisticListPopulation(List<Chromosome> chromosomes,
                       int populationLimit,
                       double elitismRate)Creates a new  ElitisticListPopulationinstance. | 
| ListPopulation(int populationLimit)Creates a new ListPopulation instance and initializes its inner chromosome list. | 
| ListPopulation(List<Chromosome> chromosomes,
              int populationLimit)Creates a new ListPopulation instance. | 
| Modifier and Type | Method and Description | 
|---|---|
| FieldVector<T> | FieldVector. getSubVector(int index,
            int n)Get a subvector from consecutive elements. | 
| abstract RealVector | RealVector. getSubVector(int index,
            int n)Get a subvector from consecutive elements. | 
| OpenMapRealVector | OpenMapRealVector. getSubVector(int index,
            int n)Get a subvector from consecutive elements. | 
| RealVector | ArrayRealVector. getSubVector(int index,
            int n)Get a subvector from consecutive elements. | 
| FieldVector<T> | SparseFieldVector. getSubVector(int index,
            int n)Get a subvector from consecutive elements. | 
| FieldVector<T> | ArrayFieldVector. getSubVector(int index,
            int n)Get a subvector from consecutive elements. | 
| RealMatrix | AbstractRealMatrix. power(int p)Returns the result of multiplying  thiswith itselfptimes. | 
| FieldMatrix<T> | AbstractFieldMatrix. power(int p)Returns the result multiplying this with itself  ptimes. | 
| RealMatrix | RealMatrix. power(int p)Returns the result of multiplying  thiswith itselfptimes. | 
| FieldMatrix<T> | FieldMatrix. power(int p)Returns the result multiplying this with itself  ptimes. | 
| Constructor and Description | 
|---|
| DBSCANClusterer(double eps,
               int minPts)Creates a new instance of a DBSCANClusterer. | 
| DBSCANClusterer(double eps,
               int minPts,
               DistanceMeasure measure)Creates a new instance of a DBSCANClusterer. | 
| Constructor and Description | 
|---|
| CMAESOptimizer.Sigma(double[] s) | 
| Constructor and Description | 
|---|
| CMAESOptimizer.Sigma(double[] s) | 
| Modifier and Type | Method and Description | 
|---|---|
| int | RandomDataGenerator. nextHypergeometric(int populationSize,
                  int numberOfSuccesses,
                  int sampleSize)Generates a random value from the  Hypergeometric Distribution. | 
| int | RandomDataImpl. nextHypergeometric(int populationSize,
                  int numberOfSuccesses,
                  int sampleSize)Deprecated.  Generates a random value from the  Hypergeometric Distribution. | 
| double[] | HaltonSequenceGenerator. skipTo(int index)Skip to the i-th point in the Halton sequence. | 
| double[] | SobolSequenceGenerator. skipTo(int index)Skip to the i-th point in the Sobol sequence. | 
| Constructor and Description | 
|---|
| DBSCANClusterer(double eps,
               int minPts)Deprecated.  Creates a new instance of a DBSCANClusterer. | 
| Modifier and Type | Method and Description | 
|---|---|
| static double | TestUtils. chiSquare(double[] expected,
         long[] observed) | 
| double | ChiSquareTest. chiSquare(double[] expected,
         long[] observed) | 
| static double | TestUtils. chiSquare(long[][] counts) | 
| double | ChiSquareTest. chiSquare(long[][] counts)Computes the Chi-Square statistic associated with a
 
  chi-square test of independence based on the input  countsarray, viewed as a two-way table. | 
| static double | TestUtils. chiSquareDataSetsComparison(long[] observed1,
                           long[] observed2) | 
| double | ChiSquareTest. chiSquareDataSetsComparison(long[] observed1,
                           long[] observed2)Computes a
 
 Chi-Square two sample test statistic comparing bin frequency counts
 in  observed1andobserved2. | 
| static double | TestUtils. chiSquareTest(double[] expected,
             long[] observed) | 
| double | ChiSquareTest. chiSquareTest(double[] expected,
             long[] observed)Returns the observed significance level, or 
 p-value, associated with a
 
 Chi-square goodness of fit test comparing the  observedfrequency counts to those in theexpectedarray. | 
| static boolean | TestUtils. chiSquareTest(double[] expected,
             long[] observed,
             double alpha) | 
| boolean | ChiSquareTest. chiSquareTest(double[] expected,
             long[] observed,
             double alpha)Performs a 
 Chi-square goodness of fit test evaluating the null hypothesis that the
 observed counts conform to the frequency distribution described by the expected
 counts, with significance level  alpha. | 
| static double | TestUtils. chiSquareTest(long[][] counts) | 
| double | ChiSquareTest. chiSquareTest(long[][] counts)Returns the observed significance level, or 
 p-value, associated with a
 
 chi-square test of independence based on the input  countsarray, viewed as a two-way table. | 
| static boolean | TestUtils. chiSquareTest(long[][] counts,
             double alpha) | 
| boolean | ChiSquareTest. chiSquareTest(long[][] counts,
             double alpha)Performs a 
 chi-square test of independence evaluating the null hypothesis that the
 classifications represented by the counts in the columns of the input 2-way table
 are independent of the rows, with significance level  alpha. | 
| static double | TestUtils. chiSquareTestDataSetsComparison(long[] observed1,
                               long[] observed2) | 
| double | ChiSquareTest. chiSquareTestDataSetsComparison(long[] observed1,
                               long[] observed2)Returns the observed significance level, or 
 p-value, associated with a Chi-Square two sample test comparing
 bin frequency counts in  observed1andobserved2. | 
| static boolean | TestUtils. chiSquareTestDataSetsComparison(long[] observed1,
                               long[] observed2,
                               double alpha) | 
| boolean | ChiSquareTest. chiSquareTestDataSetsComparison(long[] observed1,
                               long[] observed2,
                               double alpha)Performs a Chi-Square two sample test comparing two binned data
 sets. | 
| static double | TestUtils. g(double[] expected,
 long[] observed) | 
| double | GTest. g(double[] expected,
 long[] observed) | 
| static double | TestUtils. gDataSetsComparison(long[] observed1,
                   long[] observed2) | 
| double | GTest. gDataSetsComparison(long[] observed1,
                   long[] observed2)Computes a G (Log-Likelihood Ratio) two sample test statistic for
 independence comparing frequency counts in
  observed1andobserved2. | 
| static double | TestUtils. gTest(double[] expected,
     long[] observed) | 
| double | GTest. gTest(double[] expected,
     long[] observed)Returns the observed significance level, or  p-value,
 associated with a G-Test for goodness of fit comparing the
  observedfrequency counts to those in theexpectedarray. | 
| static boolean | TestUtils. gTest(double[] expected,
     long[] observed,
     double alpha) | 
| boolean | GTest. gTest(double[] expected,
     long[] observed,
     double alpha)Performs a G-Test (Log-Likelihood Ratio Test) for goodness of fit
 evaluating the null hypothesis that the observed counts conform to the
 frequency distribution described by the expected counts, with
 significance level  alpha. | 
| static double | TestUtils. gTestDataSetsComparison(long[] observed1,
                       long[] observed2) | 
| double | GTest. gTestDataSetsComparison(long[] observed1,
                       long[] observed2)Returns the observed significance level, or 
 p-value, associated with a G-Value (Log-Likelihood Ratio) for two
 sample test comparing bin frequency counts in  observed1andobserved2. | 
| static boolean | TestUtils. gTestDataSetsComparison(long[] observed1,
                       long[] observed2,
                       double alpha) | 
| boolean | GTest. gTestDataSetsComparison(long[] observed1,
                       long[] observed2,
                       double alpha)Performs a G-Test (Log-Likelihood Ratio Test) comparing two binned
 data sets. | 
| static double | TestUtils. gTestIntrinsic(double[] expected,
              long[] observed) | 
| double | GTest. gTestIntrinsic(double[] expected,
              long[] observed)Returns the intrinsic (Hardy-Weinberg proportions) p-Value, as described
 in p64-69 of McDonald, J.H. | 
| static double | TestUtils. rootLogLikelihoodRatio(long k11,
                      long k12,
                      long k21,
                      long k22) | 
| Modifier and Type | Method and Description | 
|---|---|
| ConfidenceInterval | BinomialConfidenceInterval. createInterval(int numberOfTrials,
              int numberOfSuccesses,
              double confidenceLevel)Create a confidence interval for the true probability of success
 of an unknown binomial distribution with the given observed number
 of trials, successes and confidence level. | 
| Modifier and Type | Method and Description | 
|---|---|
| static long | CombinatoricsUtils. binomialCoefficient(int n,
                   int k)Returns an exact representation of the  Binomial
 Coefficient, " n choose k", the number ofk-element subsets that can be selected from ann-element set. | 
| static long | ArithmeticUtils. binomialCoefficient(int n,
                   int k)Deprecated. 
 | 
| static double | CombinatoricsUtils. binomialCoefficientDouble(int n,
                         int k)Returns a  doublerepresentation of the  Binomial
 Coefficient, "n choose k", the number ofk-element subsets that can be selected from ann-element set. | 
| static double | ArithmeticUtils. binomialCoefficientDouble(int n,
                         int k)Deprecated. 
 | 
| static double | CombinatoricsUtils. binomialCoefficientLog(int n,
                      int k)Returns the natural  logof the  Binomial
 Coefficient, "n choose k", the number ofk-element subsets that can be selected from ann-element set. | 
| static double | ArithmeticUtils. binomialCoefficientLog(int n,
                      int k)Deprecated. 
 | 
| static void | CombinatoricsUtils. checkBinomial(int n,
             int k)Check binomial preconditions. | 
| static void | MathArrays. checkNonNegative(long[] in)Check that all entries of the input array are >= 0. | 
| static void | MathArrays. checkNonNegative(long[][] in)Check all entries of the input array are >= 0. | 
| static long | CombinatoricsUtils. factorial(int n)Returns n!. | 
| static long | ArithmeticUtils. factorial(int n)Deprecated. 
 | 
| static double | CombinatoricsUtils. factorialDouble(int n) | 
| static double | ArithmeticUtils. factorialDouble(int n)Deprecated. 
 | 
| static double | CombinatoricsUtils. factorialLog(int n)Compute the natural logarithm of the factorial of  n. | 
| static double | ArithmeticUtils. factorialLog(int n)Deprecated. 
 | 
| static BigInteger | ArithmeticUtils. pow(BigInteger k,
   BigInteger e)Raise a BigInteger to a BigInteger power. | 
| static BigInteger | ArithmeticUtils. pow(BigInteger k,
   int e)Raise a BigInteger to an int power. | 
| static BigInteger | ArithmeticUtils. pow(BigInteger k,
   long e)Raise a BigInteger to a long power. | 
| static int | ArithmeticUtils. pow(int k,
   int e)Raise an int to an int power. | 
| static int | ArithmeticUtils. pow(int k,
   long e)Deprecated. 
 As of 3.3. Please use  ArithmeticUtils.pow(int,int)instead. | 
| static long | ArithmeticUtils. pow(long k,
   int e)Raise a long to an int power. | 
| static long | ArithmeticUtils. pow(long k,
   long e)Deprecated. 
 As of 3.3. Please use  ArithmeticUtils.pow(long,int)instead. | 
| static long | CombinatoricsUtils. stirlingS2(int n,
          int k)Returns the 
 Stirling number of the second kind, " S(n,k)", the number of
 ways of partitioning ann-element set intoknon-empty
 subsets. | 
| static long | ArithmeticUtils. stirlingS2(int n,
          int k)Deprecated. 
 | 
Copyright © 2003–2016 The Apache Software Foundation. All rights reserved.